Bipartite Edge Reconstruction from Expression data (composite method with direct/indirect)
Source:R/MONSTER.R
monsterBereFull.Rd
This function generates a complete bipartite network from gene expression data and sequence motif data. This NI method serves as a default method for inferring bipartite networks in MONSTER. Running monsterBereFull can generate these networks independently from the larger MONSTER method.
Arguments
- motif.data
A motif dataset, a data.frame, matrix or exprSet containing 3 columns. Each row describes an motif associated with a transcription factor (column 1) a gene (column 2) and a score (column 3) for the motif.
- expr.data
An expression dataset, as a genes (rows) by samples (columns) data.frame
- alpha
A weight parameter specifying proportion of weight to give to indirect compared to direct evidence. See documentation.
- lambda
if using penalized, the lambda parameter in the penalized logistic regression
- score
String to indicate whether motif information will be readded upon completion of the algorithm
Examples
data(yeast)
monsterRes <- monsterBereFull(yeast$motif, yeast$exp.cc, alpha=.5)