Description: Estimates a multi-omic Gaussian graphical model for two input layers of paired omic data.
Arguments
- layer1
: first layer of omics data; rows: samples (order must match layer2), columns: variables
- layer2
: second layer of omics data; rows: samples (order must match layer1), columns: variables.
- pval
: calculate p-values for network edges. Not yet implemented in R; available in netZooPy.
- gradient
: method for estimating parameters of p-value distribution, applies only if p-val == TRUE. default = "finite_difference"; other option = "exact"
- verbose
: verbosity level (TRUE/FALSE)
Value
A list of model results. cov : the shrunken covariance matrix
cov
the shrunken covariance matrixprec
the shrunken precision matrixggm
the shrunken Gaussian graphical model; matrix of partial correlations. Self-edges (diagonal elements) are set to zero.lambdas
Vector of omics-specific tuning parameters (lambda1, lambda2) forlayer1
andlayer2
gammas
Reparameterized tuning parameters; gamma = 1 - lambda^2risk_grid
Risk grid, for assessing optimization. Grid boundaries are in terms of gamma.